#### DOCUMENT RESUME

BD 157 754

SE 024 755

TITLE

Training for Certification: Ornamental & Turf Pest

INSTITUTION

Mississippi State Univ., State College. Cooperative

Extension Service.; North Carolina State Univ.,

Raleigh.

SPONS AGENCY:

Environmental Protection Agency, Washington, D. C.

PUB DATE CONTRACT

EPA-68-01-2903

NOTE

29p.; For related documents, see SE 024 752-757;

Contains light and broken type

EDRS PRICE DESCRIPTORS MF-\$0.83 HC-\$2.06 Plus Postage.

\*Certification; Environmental Criteria; Environmental

Education; \*Environmental Technicians; \*Extension Education; \*Ornamental Horticulture; \*Pesticides; Public Health; Quality Control; \*Turf Management;

Weeds

IDENTIFIERS

\*Mississippi State University

#### ABSTRACT

This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Pocusing on ornamental and turf plant pest control, this publication examines the control of plant diseases, insects, and weeds. The contents are divided into a section on ornamental pest control and one on turfgrass pest control. The ornamental section includes discussions of disease agents, weeds, insects and mites, and vertebrate pests. The turfgrass section includes discussions of diseases, disease controls, weeds, weed control, insects, phytotoxicity, environmental concerns, and weights and measures. No specific pesticide information is given in this publication. (MR)

Reproductions supplied by EDRS are the best that can be made from the original document. \*\*\*\*\*<del>\*</del>\*\*\*\*\*

US OEPARTMENT OF HEALTH EOUCATION & WELFARE NATIONAL INSTITUTE OF EOUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGINATINC/IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OF FICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

# training for certification

Cooperative Extension Service
Mississippi State University

## Ornamental & Turf Pest Control

## TABLE OF CONTENTS

| *                | _                                            | •                                       |                                             | PAGE     |
|------------------|----------------------------------------------|-----------------------------------------|---------------------------------------------|----------|
|                  | •                                            | •                                       |                                             |          |
| ACKNOWLEDGMENTS  | • • • •,• • • • • • • • •                    | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • •                     | · į      |
| PREFACE          | •••••                                        | • • • • • • • • • • • • • • • • • • • • | ,                                           | ' ii     |
| ORNAMENTALS      | • • • • • • • • • • • • • • • • • • • •      | • • • • • • • • • • • • • •             | • • • • • • • • • • • • • • • • • •         | , .<br>1 |
| Introduction í.  |                                              | • • • • • • • • • • • • • • •           | • • • • • • • • • • • • • • • •             | · į      |
| Disease Agents   |                                              | • • • • • • • • • • • • • • •           | ••,•••••                                    | · 1      |
| Weeds            |                                              | • • • • • • • • • • • • • • • • • • • • |                                             | 6        |
| Insects and Mite | es :                                         | • • • • • • • • • • • • • • • • • • • • |                                             | 8        |
| Vertebrate Pests | s                                            | • • • • • • • • • • • • • • •           | \$<br>• • • • • • • • • • • • • • • • • • • | · 11     |
| TURFGRASS        | • • • • • • • • • • • • • • • • • • • •      | • • • • • • • • • • • • • • • • • • • • | ······································      | . 11     |
| Introduction     | • • • • • • • • • • • • • •                  |                                         |                                             | 11       |
| Diseases         | · · · · · · · · · · · · · · · · · · ·        | · · · · · · · · · · · · · · · · · · ·   | ,                                           | 12       |
| Disease Control  | ••••••                                       | ·                                       |                                             | 15       |
| Weeds            | •••••••                                      | •                                       |                                             | 16       |
| ¿ Control        | ·<br>·                                       | • • • • • • • • • • • • • • • • • • • • | · · · · · · · · · · · · · · · · · · ·       | 17       |
| Insects          | `<br>· • • • • • • • • • • • • • • • • • • • | · • • • • • • • • • • • • • • • • • • • |                                             | 18       |
| - Phytotoxicity  |                                              | • • • • • • • • • • • • •               | ,                                           | 21       |
| Environmental Co | oncerns                                      | • • • • • • • • • • • • • • • • • • • • | ••••••                                      | . 22     |
| Weights and Meas | sures                                        | · • • • • • • • • • • • • • • • • • • • |                                             | 24       |

#### ACKNOWLEDGMENTS

This guide has been developed by North Carolina State University under U.S. Environmental Protection Agency (EPA) Contract Number 68-01-2903.

This contract was issued by the Training Branch, Operations Division,

Office of Pesticide Programs, EPA.

The guide has been edited by the Extension Plant Pathology, Entomology and Agronomy Departments to correspond with Mississippi conditions...

#### PREFACE

must meet before you can use certain pesticides. Your State will provide material which you may study to help you meet the general standards. This guide contains basic information to help you meet the specific standards for applicators who are engaged in ornamental and turf pest control.

Because the guide was prepared to cover the whole nation, some information important to your State may not be included. The State agency in charge of your training can provide the other materials you should study.

This guide will give you information about:

- . recognition and control of ormamental pests,
- . recognition and control of turfgrass pests, and
- . environmental concerns for ornamental and turfgrass pest control.

Your test for certification will be based upon:

- . general information important to all commercial applicators and
- . specific information about ornamental and turf pest control.

#### ORNAMENTALS

#### Introduction

Some plant damage is caused by living pests, including:

- . disease agents,
- weeds,
- insects and mites, and
- \ vertebrate animals.

Other causes of plant problems are:

- . too little, too much, or imbalanced fertilizer,
  - · pesticide injury,
  - .,improper planting and pruning,
  - . root girdling,
  - . soil conditions (such as improper drainage, compaction),
  - mechanical damage (by such things as earth moving equipment, mowers, and hand tools),
  - . pollution damage, ∙and
  - natural aging of plants (often mistaken for damage caused by insects and diseases).

You must diagnose the problem before using control methods. Can you find an insect or recognize the symptoms of a disease? Binpointing causes of plant damage usually requires close observation.

## Disease Agents

Fungi, bacteria, viruses, nematodes, mycoplasmas, and parasitic plants cause diseases of landscape plants. Most common diseases are caused

by fungi. The environment is of major importance to the development of disease in woody plants. For example:

- . a sudden drop in temperature in the fall or early winter increases the susceptibility of plants to cankers caused by fungi.
- . Waterlogging of the soil contributes to the development of certain
- Prolonged periods of rain can cause an increase of such fungal diseases as seab and leaf spots.

The more common diseases of landscape plants are described below.

#### Vascular Wilt

Vascular wilt fungi of shade trees are of two types:

- . those that infect roots (Verticillium wilt), and
- . those that infect stems (Dutgh elm disease).

Verticillium wilt is present in the soil. It spreads upward from the roots through the sapwood and interferes with water movement and other plant

functions. Dutch elm disease is transmitted by elm bark beetles. In both diseases, leaf wilting, browning between veins, and leaf drop usually begin in one branch and progress through the tree. Dead and dying branches, sparseness of the crown, and reduced twig growth are common symptoms.

Another is a discolored streaking in the wood of affected branches or in the main trunk.

## keaf Spots

Fungal leaf spots occur on most kinds of ornamental plants. They usually appear first on lower leaves. They may begin as dark brown, pinhead-sized spots which sometimes have a yellow halo. Spots may enlarge to cover

ter of many leaf spots. As the spots become more abundant, leaves may yellow, die, and drop.

Leaf spots are more common in the early spring and fall. Wet conditions usually are necessary for infection. Healthy plants become infected when the fungus spores are:

- . splashed onto them from infected leaves on the ground,
- . blown to them by the wind, or
- . carried to them on clothing and tools.

#### Root Rot

Root rot is common on most ornamental plants. Root and crown rots may be caused by both bacteria and fungi. Both of these organisms develop under conditions of high moisture. Excessive watering usually accompanies the onset of root rot. Early symptoms begin with yellowing of the lower or older leaves, which may or may not result in defoliation. As the disease develops the yellowing continues up the plant and may result in death.

Another leaf symptom is the wilting or burning of the leaf margins. These yellow to necrotic area move inward between the major veins of the leaf.

Upon close observation a decay can be seen extending from the crown of the plant downward to include most of the root system. The decayed outer surface of the root system usually sluffs off when the plant is removed from the soil.

#### Powdery Mildew

Powdery mildew occurs on plants both in greenhouses and outdoors. Common hosts are rose, zinnia, crab apple, euonymus, and crape myrtle. Powdery mildew may create a white powdery coating on the leaves, buds, or stems of highly susceptible plants. The new growth is stunted and curled, and leaves may become dry and drop. The flower buds are frequently malformed and may fail to open properly.

#### Bacterial Fire Blight

Certain varieties of apple, flowering crab, pear, pyracantha, mountain ash, and quince are highly susceptible to fire blight. Hawthorne, rose, cotoneaster, and spirea are affected less seriously. The signs of fire blight are:

- . Blossoms and leaves suddenly wilt, turn dark brown, shrivel, and die, but usually remain attached.
- . Secondary infections start in the small twigs, progress down the stem, and may involve whole branches.
- . Blighted terminals may bend to resemble a shepherd's crook.
- . Dark streaking of the wood extends several inches beyond the diseased area,
- . Cankers on limbs are shrunken, and are dark brown to purple. An orange gum or slime often oozes from them.

The bacteria overwinter in cankers on the plant. They are spread by:

- . wind-blown rain,
- . insects, and
- . pruning tools.

#### -Nematodes

Most nematodes live in the soil and food on plant roots. Some kinds cause small knots on roots; others kill the tips of feeder roots.



The above ground symptoms of nematode damage may include:

- . yellowing of foliage,
- . stunting, and
- . a general decline of the plant.

It is difficult to distinguish between the symptoms of nematode damage and root rot infection. You may have to have soil and plant samples examined in a laboratory to confirm a nematode infestation. Rootknot of boxwood is an example of a nematode disease of ornamentals.

#### Disease Control

Types of chemicals available for disease control include:

- Protective chemicals applied to foliage, flowers, and fruit. They are subject to weathering and must be reapplied regularly.
- . Systemic chemicals These can be applied less frequently.
- . Soil fumigants. Use of these to control soil-borne fungi, bacteria, and nematodes is economically feasible in the production and estab-

lishment of high value ornamentals.

There are no known chemicals for control of virus. With few exceptions, disease-controlling pesticides will not eradicate disease-producing agents after infection has occurred. Careful management, including pruning out of dead and dying plant parts and the removal of infected leaves, coupled with preventive use of the correct fungicides and bactericides will prevent further spread. In some situations, routine preventive use of a pesticide is the only practical way to protect highly susceptible plants. Your local extension agent can help you identify your pest problems and select the correct pesticide:

#### Weeds

Many kinds of weeds are pests in landscape plantings. Annual weeds are most troublesome in intensively cultivated ornamentals. Common annual weeds in ornamentals include:

- grasses (crabgrass foxtail, goosegrass, and barnyardgrass) which germinate during the spring and summer,
- annual bluegrass, henbit, and chickweed which germinate during the late summer or fall,
- . annual broadleafed weeds (purslane, pigweed, and lambsquarters)
  which germinate during the warm seasons and are killed by hard
  frost, and
- those that survive freezing temperatures (horseweed, common chickweed, and pepperweed).

Biennial and perennial weeds are most troublesome in uncultivated ornamentals. They have underground plant parts that survive from year to year. They are spread in several ways

- . Many spread easily when carried in soil, in root balls, and on cultivating equipment, as well as by seeds. These include Bermuda grass, johnson grass, quackgrass, nutsedge, torpedograss, Florida botany, and wild garlic.
- Seeds of perennial weeds such as dandelion and dock are spread primarily by wind and water.

#### Weed Control

.Consider both the weed and the ornamental plant when choosing control methods. You can use cultural methods, herbicides, or combinations of the

two. Many weeds are resistant to some cultural or chemical controls. No herbicide is safe for all ornamental plants. Newly planted ornamentals usually are more easily injured by herbicides than established plantings are. The herbicide label will tell you how to use it safely and effectively.

Herbicides kill weeds through the leaves or the roots or both. Selective herbicides kill some plants without killing others. Nonselective herbicides kill most plants on which they are applied.

The main types of herbicides used in or around ornamentals are:

- · preemergence herbicides,
- . post emergence herbicides, and soil fumigants.

Persistent herbicides may leave residués that may injure a sensitive, crop planted later. Repeated applications of persistent herbicides also can injure ornamental plants under certain soil and climatic conditions. Granular formulations provide an efficient means for applying preemergence herbicides. Post emergence herbicides usually are less persistent than preemergence herbicides. They usually must be applied as a directed spray.

Soil fumigants are nonselective and cannot be used in the root zones

of desirable plants. Use fumigants before planting. The label will specify
waiting periods between treatment and planting.

Soil sterilants will control most weeds for long periods of time.

In humid regions, however, no material is completely effective for more than one season. Soil sterilants are nonselective. They pose a threat to nearby trees, shrubs, and turfgrass through root uptake or movement of the chemical by wind or water.

#### Insects and Mites

Ornamental plants are damaged by many kinds of insects and mites. Some suck sap from plants, others chew on or tunnel in plant parts or cause damage in other ways.

Some plants are very susceptible to insects and mites and require intensive pest control. Other plants are rarely attacked by insects or mites.

Pest insect infestations vary from year to year, and control is not always needed.

There are several kinds of insects and mites that you should recognize.

They can be grouped according to the part of the plant they feed on and the kind of injury they cause.

## Insects and Mites that Damage Leaves, Buds, Fruits, and Flowers

Caterpillars are the larvae of butterflies or moths. Caterpillars chew plant parts and may completely defoliate a plant. Some form webs or tents on the branches. A few bore into the plant and feed inside. Some have more than one generation per year.

Beetles are hardshelled insects. Many have spots, stripes, or other markings. Both adults and larvae may damage plant parts by boring into or chewing them. Some beetles are active only at night.

Leafminers are the larvae of small flies. They feed inside the leaf.

Damage appears as brown or discolored blotches or winding trails on the leaf.

There may be more than one generation per year.

Aphids are small, soft-bodied insects that suck sap through tiny needle-like mouthparts. There may be several generations in a single season. They may be green, red, or black. They feed on stems, terminals

or undersides of leaves.

Foliage often curls or is otherwise distorted. Some aphids transmit plant disease. Aphids produce honeydew, a sweet liquid which collects on the foliage where a black sooty mold grows on it. Sooty mold is controlled by controlling the aphids.

Mites are closely related to insects. They are hard to see without magnification. Eggs, young, and adults all may be present on an infested plant at the same time. Some form webs on the lower leaf surface. Mites damage leaves by sucking sap. The foliage becomes stippled and may turn off-green, yellow, or orange. Mites may produce several generations in a single season.

Lacebugs are small, broad, flat insects with clear, lack-like wings. Eggs, young, and adults all may be on a plant at the same time. Both adults and young suck sap and cause off-colored speckles, yellowing, and leaf drop. Many small, black, varnish-like spots of excrement on the undersides of leaves are evidence of lacebug infestation.

#### Insect Pests of Trunks, Stems, or Branches

Scale insects and mealybugs may kill large branches or whole plants.

Some attack leaves and buds. Both insects secrete a protective waxy substance which covers them.

Mealybugs move on the plants as both young and adults. Newly hatched scale insects, (crawlers) move around on the plant. Mature scale insects however, are securely fastened to the plant surface. They may be circular, oval, or pear-shaped. Large numbers may form crusts on the plant. They lay eggs underneath the protective covering.

Borers are larvae of some moths and beetles. They do the most damage in the living cells just under the bark. Plants in poor health are more susceptible to attack by borers. One to several years may be required to complete a life cycle.

#### Insect Pests of Roots

Grubs are the Tarvae of hardshelled beetles or weevils. They usually are white with brown heads. Some have legs; others are legless. Grubs eat plant roots and may weaken or kill a plant.

Root borers are the larvae of moths or beetles. They are shaped like grubs or caterpillars. They are usually a whitish color. Root borers damage plants by eating or hollowing out plant roots and crowns.

Root-feeding aphids weaken the root system of plants. They damage roots by sucking sap, which may cause galls to form. Root aphids look like foliar-feeding aphids. Some are serious pests of foliage as well as roots.

Calls are swellings of plant parts. Many kinds of insects and mites cause galls and live inside them. Galls are unsightly but usually are not tharmful to the health of a plant.

#### Insect and Mite Control

To control insects and mites, direct the pesticide at the stage of the insect or mite that is causing the damage. In some situations, preventive use of insecticides may be necessary to protect plants from infestations. Your decision to use a preventive insecticide should be based on a previous history of infestation in your area. Your local extension agent can help to identify your pest problems and select the correct pesticide.

#### Vertebrate Pests

Vertebrate animals may damage ornamentals in several ways. Some (such as mice and moles) feed on roots and crowns. Others (including mice, rabbits, deer and woodpeckers) feed on stems, trunks, twigs, or foliage.

Barriers, trapping, repellents, and pesticides all help control vertebrate pests. Control of insects on which vertebrate pests feed is essential.

#### TURFGRASS

#### Introduction

Pest control in turf grass includes:

- . good cultural practices, and
- . chemical pest control.

Turfgrass problems often result from causes other than pests. These other causes include:

- . improper watering,
- . improper fertilization practices,
- . injury from pesticides,
- . accumulation of excessive thatch,
- . improper selection of turfgrass species,
- . improper mowing height,
- poor root systems,
- . soil that is either too acid or too alkaline, or
- an accumulation of soluble salts in the soil.



Be sure to consider these factors when diagnosing and treating turfgrass problems.

#### Diseases

The major diseases of turfgrass are caused by:

- , fungi, which can cause root and crown rots and foliar diseases, and
- . nematodes, which feed on the roots.

Stands of diseased grass may look thin and unthrifty or contain streaks of circular patches of dead grass. Some of the more common diseases of turfgrasses are:

#### Helminthosporium ,

Helminthosporium causes leaf spots and root rots. Spots on the leaves usually begin as small purplish, reddish-brown areas about the size of a pinhead. These enlarge to form tan to light brown spots with reddish-brown margins. When the disease is severe, the spots girdle the leaves at the base and cause them to yellow. A severe infection may cause a general fading out of turfgrass. Helminthosporium diseases are more severe during long periods of wet weather in the early spring and fall. They develop best in areas of high nitrogen fertilization.

#### Dollar Spot

Dollar spot is a fungus disease that is common on many species of grasses, particularly on bent grass, annual blue grass, zoysia and Bermuda. Dollar spot usually occurs during cool, wet periods in the spring and fall. However, it can also occur during the summer when nighttime temperatures are fairly low. Dollar spot which is favored by humid, damp weather, is



characterized by small yellow spots on grass blades which later become light brown in color. The Disease areas are light brown to straw colored circular dead areas in the turf that are 1½ inches to 3 inches in diameter. In some cases the circles are much larger—up to 4 to 6 inches in diameter. These circles may merge to form large irregular patterns.

#### Pythium Blights

Pythium blights are among the most destructive turfgrass diseases.

Grasses most commonly affected are the bentgrasses, Bermuda grasses, fescues, and ryegrasses. In the South most damage occurs on ryegrasses used in overseeding. The disease is first seen as small, irregularly-shaped, watersoaked greasy patches 1/2 to 4 inches in diameter. A cottony growth may be present early in the morning. Diseased areas may eventually range from 1 to 10 feet in diameter.

Pythium blights develop best in humidaweather with temperatures above 70 degrees F. They are most severe on grass grown under high nitrogen fertilization.

## Rhizoctonia Brown Patch

Under conditions of close mowing, Rhizoctonia brown patch appears as irregularly-shaped patches of blighted turfgrass that range in size from a few inches to two feet or larger. At first, the patches are light green to yellow in color. Then they fade to a light brown. When the grass is wet, the diseased patches frequently have dark, purplish margins (smoke rings).

. When high mowing is practiced, the leaves wither and fade to a light brown. The patches may be irregular and range up to 50 feet in diameter. Rhizoctonia brown patch develops best during long periods of humid weather.



14

The disease usually occurs during hot weather (80 degrees - 90 degrees F).

Grass grown under high nitrogen fertilization is more susceptible to the disease.

## Slime Molds

Slime molds appear as dull gray to light blue masses of powdery growth on the surfaces of the leaves. They are most common during long periods of light rainfall. Although they are unsightly, they do not damage the grass. Controls are unnecessary.

## Gray Leaf Spot \*

Gray leaf spot of St. Augustine grass is a fungus disease causing irregular gray, dirty-yellow or ash colored spots with brown, purple or water-soaked borders on leaf blades. Lesions may occur on stems and spikes as well as on leaves. This disease develops rapidly with abundant moisture and warm temperature. It is usually noticed first in shaded areas that remain damp for some time. Disease severity is enhanced by excessive nitrogen fertilizer on certain types of St. Augustine grass.

## Fairy Rings

Fairy rings are seen as circles of darker green, faster growing turfgrass ranging from 2 to several hundred feet in diameter. They are often surrounded by mushrooms, toadstools, or puffballs. These fungi may prevent water from penetrating the soil.

## Nematodes

Many kinds of nematodes feed on the roots of turfgrasses and reduce their vigor. Nematode injury may be confused with nutritional problems,



insufficient water; hardpan, or any other factor which restricts root development.

Symptoms of nematode injury include:

- . thinning or completely killed areas,
- . . pale green to yellow color,
  - excessive wilting, and
  - . poor response to fertilization.

The best way to identify problems is with a laboratory examination of soil or plants.

#### Disease Control

Disease-producing agents in turfgrasses can be minimized and in some cases controlled through the use of good management practices. Turfgrasses fungicides are available for use as preventive sprays or granules. When an outbreak of a disease agent occurs, preventive fungicides should be applied quickly. After infection has occurred, the use of a preventive fungicide is directed at protecting against future infection. Timing of protective fungicide applications should be based on a knowledge of:

- . life cycle of the fungus, and
- . weather conditions that are best for its parasitic activities.

In rare instances, preventive use of a fungicide is warranted when the location has a history of turfgrass disease. The routine use of fungicides can prevent disease outbreaks in turfgrass, but is an expensive and potentially harmful practice. Your local extension agent can help you identify pest problems and select the correct pesticide.

#### Weeds

Any plant can be considered a weed if it is growing where it is not wanted. Bermuda, for example, would be a weed in a St. Augustine grass lawn. To plan a good weed control program, you must:

- . identify the desirable turfgrass,
- . identify the existing weeds, and
- . know what other weeds are likely to become a problem. ~

#### Annual Weeds

Annual weeds complete their life cycle in less than one year. Because climatic conditions influence the timing of the life cycle, the correct time for control varies from year to year and from one species to another.

Summer annual weeds common to turfgrass are:

Broadleaf Weeds

Grass Weeds

knotweed'

crabgrass

goosegrass

spurge

foxtail

barnyardgrass,

lespideza

Winter-annuals are common in turf:

Broadleaf Weeds .

Grass Weeds

common cickweed

annual bluegrass

henbit

Biennial Weeds. Biennial weeds normally occur at the same time as perennial broadleaf weeds. Controls are similar. Examples are: some thistles and wild carrot:

Perennial Weeds. Perennials, both broadleaf and grasses, occur widely as surfgrass weeds.

Broadleaf Weeds

dandelion

wild garlic

dichondra

plantain

mouse-ear chickweed

dack

Grass Weeds

dalli**s**grass

bahiagrass

nutsedge\* . ";

torpedograss

\*(Nutsedge is not a grass, but is often considered as one in turfgrass weed control.)

#### Control

The presence of weeds in turfgrass does not always require the use of herbicides. In areas that contain sensitive plants, it may be better to avoid the use of herbicides than to risk injury. In some locations, any kind of plant cover may be better than dead plants or bare ground. Granular formulations are effective for preemergence herbicides applied to the soil. Sprays are better for post emergence control where foliar coverage is needed.

## Broadleaf Weéds

Several post emergence herbicides are used to selectively control annual, biennial, and perennial broadleaf weeds in turfgrasses. They can be used alone or as combinations of more than one active ingredient. Spring and fall applications of post emergence herbicides normally give satisfactory control and reduce the possibility of damage to non-target plants. Young weeds are usually more susceptible to herbicides. Spot treatments are best for scattered weed populations. Weather conditions affect control results.

Grass Weeds. Control of annual grasses is best achieved with:

- . preemergence herbicides for general infestations,
- spot treatment with post emergence herbicides for localized infestations.

Few herbicides are safe for use on newly seeded turfgrass. Most preemergence herbicides applied in the spring adversely affect germination of turfgrasses seeded that spring. Certain varieties of turfgrasses are more prone to injury by some herbicides. Check Tabels for precautions.

Perennial grass weeds are the most difficult to control. Very few chemicals will control these weeds without damaging the turfgrass, especially St. Augustine grass and Centipede lawn.

#### Insects

- . When examining turfgrass for insects, look for:
  - · thinned grass stands,
  - . dying or dead patches,
  - . discolored or withered blades,
  - . chewed or frayed blades,
  - frass or webbing.
  - . small holes, mounds, or burrows, or
- . presence of large numbers of bird and animal dreppings.

Some of the more troublesome turfgrass insect pests are:

#### Grubs

Grubs are the larvae of hardshelled beetles. They are white to offwhite with a brown head and six legs. Grubs damage grass by eating the roots. Seriously damaged turfgrass can be rolled back like a carpet. When the grass is rolled back, grubs may be found lying in a C-shaped position in the soil.

Grubs are most easily controlled during the time they are actively feeding.

#### Billbugs

Billbugs are small, dark-colored beetles with snouts. Adults lay eggs in turfgrass stems in late spring. The eggs hatch into legless larvae. The larvae eat their way down the stems and into the crowns. Adults feed on leaves and stems, but are less destructive than the larvae.

Damage shows up in late summer as small dead patches of turfgrass.

Damaged plants break off at the crown zone if pulled on.

#### Sod Webworms

Sod webworm caterpillars are 1 inch or less in length. They are off-white with parallel rows of small dark spots. The adults are cigar-shaped, buff colored moths. The caterpillars chew off grass stems and leaves above the soil line. Damage shows up as small dead spots. When many sod webworms are present, the spots join to form large, irregularly-shaped brown patches. Adult sod webworms do not damage turfgrasses.

#### Chinch Bugs

Full-grown chinch bugs are about 1/4 inch long. They are rectangular black bugs with a white area on their back. Turfgrass infested with chinch bugs is a sickly off-color at first, with brown and green blades intermixed. Later, large irregular dead patches show up. Young and adult chinch bugs suck sap from turfgrass blades. The bugs may be found deep in the thatch at the outer edge of the brown patches.



20

#### Insect Control

Insects that attack turfgrass at or below the soil surface can be controlled only by directing the pesticide at the soil surface and watering it into contact of the pests. Foliage-feeding insects can be controlled by directing the insecticide at the turfgrass foliage. Watering in an application directed at foliage feeders will move the insecticide below the area where the insect pest is feeding and the desired control will be lost. In some areas, preventive applications of insecticides will minimize damage from soil-feeding pests. More than one pest may be causing damage at the same time. Each may require different timing and placement of insecticide for control. Be sure to consider this when you develop a treatment schedule. Your local extension agent can help you identify pest problems and select the correct pesticide.

## Vertebrate Pests

Vertebrate animals may damage large areas of turf while they are searching for grubs and other soil-infesting insects. They include:

- . mice,
- . voles,
- . skunks,
- . moles,
- . raccoons,
- . foxes,
- . squirrels, and
- . birds.

Control of turf-damaging insects also helps control damage by vertebrate

animals, because it reduces their food supply.

#### Phytotoxicity

Phytotoxicity is undesirable injury to plants. Symptoms of phytotoxicity include:

- . leaf drops,
- . stunting,
- . overgrowth,
- . discolored foliage,
- . 'leaf curl', and
- . stem distortion.

The cause of phytotoxicity may be easy to determine or it may be subtle and hidden. Pesticides can cause phytotoxicity. Other causes that create similar symptoms are:

- .. insects and disease agents,
  - . insufficient moisture,
  - . improper fertilization, and
  - . other adverse growing conditions.

Factors that contribute to pesticide phytotoxicity include:

- . high air temperature during and immediately after pesticide application,
  - . excessive rates of application,
  - . too little water,
  - . uneven distribution of pesticide,
  - . mixing liquids or emulsifiable concentrates with wettable powders,
  - . mixing fertilizers with pesticides,

. variety and species differences.

Take special care to avoid injury to landscape plants and turfgrass when using herbicides. Some herbicides leave residues in spray tanks that will injure desirable plants. Use separate sprayers for herbicides. Know which herbicides may contaminate sprayers.

#### Environmental Concerns

To control drift and vaporization:

- . Apply pesticides when wind speeds are low.
- . Use lowest practical operating pressure and largest practical nozzle opening.
- . Keep nozzle as close to target as possible.
- . Avoid using airblast sprayers and dusters when working near sensitive plants and sites.
- . Do not apply herbicides with airblast sprayers.
- . When possible, select products with low volatility.

To control the adverse effects of pesticide movement:

- . Use special precautions when using pesticides on slopes.
- . Select the least hazardous pesticide that will do the job.
- . Use minimum doses, mulches, and, if possible, maintain a buffer area between the area to be treated and sensitive areas.
- Consider the chances of heavy rainfall.
- . Regulate the amount and duration of irrigation.
- . Be aware of the potential for ground water contamination.
- Avoid carrying treated material or the pesticide residue from the target area to adjacent areas.

Applicators must be familiar with the persistence of pesticides they apply to ornamentals and turfgrass, especially where:

- . adjacent areas may be affected,
- . treated soil is used to grow other plants, or
- . humans, pets, or other animals are present.

Repeated applications of some pesticides to the same area may cause harmful residues.

Applications. Methods of application vary with:

- . the kind of pesticide,
- .. the host, and
  - the target pest.

Application equipment must be able to deliver a thorough coverage of the correct amount of pesticide to the plant parts which need protection. Low pressure, low volume sprayers or granular applicators can be used for control of:

- . soil or foliage pests or ornamentals,
- . diseases or insects on turfgrass, or
- . weeds.

High pressure hydraulic or air blast sprayers are not often used on ornamentals or turfgrass. You can use them for spraying large trees.

Protecting Animals and People. Keep animals and people away during application, and until spray has dried or dust has settled. Keep them away from the areas of potential drift and runoff. Remove toys, pet food dishes, birdfeeders, and other articles from the site before applying a pesticide. Do not use pesticides when people or pets cannot be excluded during the re-entry period specified on the label.

#### Weights and Measures

Weights,

1 ounce

= 28.35 grams

16 ounces

= 1 pound = .453.59 grams

l gallon water

= 8.34 pounds = 3.785 liters = 3.78 kilograms

Liquid Measure

I fluid ounce

= 2 tablespoons = 29:573 milliliters

16 fluid ounces

= 1 pint:= 0.473 Liters

2 pints

= 1 quart = 0.946 liters

8 pints = 4 quarts

, = 1 gallon = 3.785 liters

Length

1 fogt

= 30.48 centimeters

3 feet

= 1 yard = 0.9144 meters

16 1/2 feet

= 1 rod = 5.029 meters

5,280 feet

= 320 rods = 1 mile = 1.6 kilometers

Area

1 square foot

- = 929.03 cm

9 square feet

= 1 square yard = 0.836 square meter

43,560 square feet

= 160 square rods = 1 acre = 0.405 hectare

Speed

1.466 feet per

second

= 88 feet per minute = 1 mhp = 1.6 kilometers

per hour (kph)

Volume

27 cubic feet

= 1 cubic yard = 0.765 cubic meter

1 cubic foot

= 7.5 gallons = 28.317 cubic decimeters